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Abstract

The objective of this paper is to determine both the fuzzy eigenvalues and eigenvectors of a finite element model defined

with fuzzy parameters. The proposed method introduces the concepts of mode shape pairing and the functional

dependence of eigensolutions with respect to design parameters. High-order approximations are then introduced to limit

the computational cost associated with variability management. Numerical test cases are used to highlight the abilities of

this method to predict behaviour modifications due to variations in the physical parameters.

r 2007 Published by Elsevier Ltd.
1. Introduction

In recent times, the development of computing resources has radically modified the type of problems
accessible to simulations tools. Today, numerical simulations (e.g., the finite element method) are well
established in industry and are essential in the design phase of mechanical structures. Although numerical
models have become more and more complex and realistic, the results are still quite different from observed
reality. Indeed, when realizing and using mechanical structures, the sources of variability and uncertainty [1]
can be numerous. In this context, variability refers to the variation inherent to a given physical system or
environment, and uncertainty refers to a potential deficiency in any modelling phase or activity that is due to
lack of knowledge. Variability typically exists in terms of physical properties and manufacturing tolerances,
while uncertainty is more a question of model inaccuracies. Variability and uncertainty inevitably affect the
response of the structure and, therefore, its reliability.

Different approaches have been developed to take this variability and/or uncertainty into account. The
probabilistic [2–4], interval [5,6], convex [7] and fuzzy approaches currently provide the principal tools for
dealing with the variability and uncertainty commonly found in engineering problems. In this paper, fuzzy sets
theory [8–12] is used. This formalism is based on the idea that the subset bounds are difficult to define
precisely. Dubois and Prade [13] add that the values defining fuzzy sets do not produce a precise description,
but rather reflect a tendency. Thus, this fuzzy formalism can be used to introduce the notion of variability in
design parameters. In the literature, the first solution described for solving fuzzy modal analysis applied
ee front matter r 2007 Published by Elsevier Ltd.

v.2007.06.004

ing author. Tel.: +333275 11459; fax: +33 3275 11317.

ess: franck.massa@univ-valenciennes.fr (F. Massa).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.06.004
mailto:franck.massa@univ-valenciennes.fr


ARTICLE IN PRESS

Nomenclature

Kð ~p1; . . . ; ~pnÞ stiffness matrix depending on fuzzy
parameters ~p1; . . . ; ~pn (size [Ndof�Ndof])

Mð ~p1; . . . ; ~pnÞ mass matrix depending on fuzzy
parameters ~p1; . . . ; ~pn (size [Ndof�Ndof])

n number of fuzzy parameters
nd number of discrete values
Ndof number of degrees of freedom
pc crisp value of fuzzy parameter ~p
pi design parameter i
~pi fuzzy design parameter i

pa lower bound for a-level cut of fuzzy
number ~p

p̄a upper bound for a-level cut of fuzzy
number ~p

~pa a-level cut of fuzzy number ~p
½p0; p̄0� support of fuzzy number ~p
a a-level cut i

Dpa lower variation for a-level cut of fuzzy
number ~p

Dp̄a upper variation for a-level cut of fuzzy
number ~p

~K fuzzy spectral matrix (size [Ndof�Ndof])
mi degree of confidence i
~U fuzzy modal basis (size [Ndof�Ndof])
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Zadeh’s Extension Principle [8]. This method is simple to implement, but is too expensive for most practical
finite element applications, for which the finite element models require several thousand degrees of freedom
and have numerous fuzzy parameters. To avoid this drawback, many authors have proposed alternative
methods. These methods can be divided into 2 main groups: those using a matrix formulation and those using
a parametric formulation.

In the matrix formulation, first proposed by Valliappan [14], specific interval matrices are built for each
a-cut level (e.g., in modal analysis, the interval mass and stiffness matrices). The interval problem is then
transformed into a first-order [15–17] or high-order [18,19] perturbed problem, and the solutions are obtained
by calculating the interval bounds. These techniques, though less time consuming than the Extension principle,
supply only an idea of the behaviour variation but do not provide the real variations needed in the design
phase. More recently, the matrix formulation has been replaced by a parametric formulation, in which the
interval problem is transformed into a discrete problem for each a-cut level. The global strategy of this
formulation is to look for combinations of discretized fuzzy design parameter values, which indicate the
extreme variations for each a-cut level. This strategy leads to a significant number of deterministic finite
element simulations [20]. Obviously, the proposed methods provide a general idea of the behaviour variation,
but not necessarily the most extreme variations. Among these methods, some are based on the strong
assumption that a linear functional dependency is sufficient for assessing variability [21,22]. None of the
methods deal with mode shape pairing or building eigenvector membership functions, which are generally not
taken into account at all.

This paper introduces a new alternative to Zadeh’s Extension Principle. The main goal of this
alternative method is to calculate both fuzzy eigenvalues and fuzzy eigenvectors with a good level of
precision and an acceptable CPU time. For the context described above, three fundamental notions
are needed to efficiently compute the fuzzy solution sets, namely functional dependence, mode shape
pairing and high-order approximations. Section 2 presents a brief overview of the formulation of fuzzy finite
element modal analysis. In Section 3, the main characteristics of Zadeh’s Extension Principle, which
allows fuzzy numbers to be managed in a general context, are summarized. This principle was applied
to solve fuzzy modal analysis problems in order to provide the reference data used in Section 6.
Section 4 describes a parametric modal analysis method to highlight the mode shape pairing and functional
dependence of the eigensolutions. In Section 5, these notions are used to explain the different steps of our
method for calculating fuzzy modal solutions (eigenvalues and eigenvectors), and high-order approximations
(i.e., Padé Approximants) are introduced to limit the computational cost associated with variability
management. Our method, called PAEM (Padé Approximants with Extrema Management), is applied in
Section 6 to several different test cases. The final section offers our conclusions and perspectives for future
research.
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Fig. 1. Current forms of the membership functions: (a) triangular and (b) trapezoid.
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2. Fuzzy modal approach

A variety of applications use a fuzzy set approach to describe non-deterministic data [8–12]. Fuzzy set
theory is an extension of ordinary set theory, in which each object either belongs to a set or does not. Fuzzy set
theory introduces the notion of degree of membership, using a membership function to describe, for each
element in the domain, the level of membership in the fuzzy set. This function can take different forms,
depending on the user’s perception of the input’s imprecision [14–16] and the kinds of imprecision considered.
Fig. 1 presents the different forms of fuzzy numbers or fuzzy intervals ~p currently used. The membership
function can also take other forms. In this article, the only restrictions are the normality and convexity of the
fuzzy quantities. The fuzzy numbers are used to model the variability of the material properties or geometric
characteristics of the finite element structure, such as Young’s modulus E, Poisson’s ratio v, density r,
thickness e for shell elements, or section S for bar or beam elements. These parameters are considered to be
independent and uniform.

With the fuzzy formalism, the eigenvalue problem which governs the modal analysis can be written as follows:

Kð ~p1; . . . ; ~pnÞ
~U ¼Mð ~p1; . . . ; ~pnÞ

~U ~K; (1)

where

~U
T
Mð ~p1; . . . ; ~pnÞ

~U ¼ ~I (2)

and Mð ~p1; . . . ; ~pnÞ and Kð ~p1; . . . ; ~pnÞ are, respectively, the mass and stiffness matrices that are dependent on the
fuzzy parameters ~p1; . . . ; ~pn,

~U and ~K are, respectively, the fuzzy modal basis and fuzzy spectral matrix.
Fuzzy set theory has its own arithmetic, which allows the classic operations (e.g., +, �, � ) on the fuzzy

scalars to be extended. Extending this arithmetic to problems with matrices or to other more complex
problems (e.g., linear systems and eigenvalues) is not trivial and implies some overestimation. One solution
described in fuzzy set theory is to use the Extension Principle developed by Zadeh.

3. Zadeh’s extension principle (ZEP)

Zadeh’s Extension Principle is outlined below:
Given a function j that maps from X ¼ Xl�X2�?�Xn to a universe Y, such that y ¼ j(xl, x2,y, xn)

where yAY and xiAXi, 8i, and considering the fuzzy subsets Al, A2,y,An defined for the reference sets X1,
X2,y,Xn, the Extension Principle defines a fuzzy subset B of Y using the data from the fuzzy subsets Al,
A2,y,An of X. A fuzzy characterization of the membership function in Y is written as follows:

If j�1ðyÞa+; mBðyÞ ¼ sup min ðmA1
ðx1Þ;mA2

ðx2Þ; . . . ;mAn
ðxnÞÞ

� �
x2X ;y¼jðxÞf g

,

If j�1ðyÞ ¼+; mBðyÞ ¼ 0. ð3Þ
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In practice, this procedure is organized in three steps:
�

Fig

val
Discretization of membership functions.
Each membership function is discretized according to the support ½p0; p̄0� (Fig. 2). The support is cut into nd

discrete values fp1; . . . ; pnd
g, to which a degree of confidence fa1; . . . ; and

g is associated. Fig. 3 presents this
discretization step for two fuzzy parameters. The parameter variation domain (before discretization) is
represented by the central square of the figure. The problem is of a continuous nature. After discretization,
this problem is transformed by a discrete problem, in which the parameter variation domain is represented
by all the possible combinations of discrete fuzzy parameter values. These combinations are represented by
the circles in Fig. 3.

�
 Calculation of deterministic solutions due to all the combinations of values of fuzzy parameters.

The strategy is to calculate all these combinations in order to determinate the minimum and maximum
variations of the studied solutions.

�
 Evaluation of the degree of confidence of all the solutions.

The membership functions of the solutions are built by considering that the degree of membership of one
combination is equal to the smallest degree of membership of the independent parameters in this
combination. In the case of multiple occurrences of a solution, the final membership degree is equal to the
maximum membership degree of the different solutions.
The following example is used to illustrate the Extension Principle. Consider two fuzzy numbers ~a and ~b; an

application j, defined as the operation ‘‘multiplication’’; and the output fuzzy number ~c obtained by the
Extension Principle (Fig. 3).

In Fig. 3, the degree of confidence of the fuzzy numbers ~a and ~b in case (1) is equal to 1 and 1/3, respectively.
The degree of confidence for this combination is thus equal to the minimum degree (i.e., 1/3), and the
calculation yields a value of 1. For case (2), the degree of confidence is 1/2, and the result of the calculation is
also 1. Taken together, cases (1) and (2) produce a multiple occurrence of the solution: 1. The final degree of
confidence for the combination is therefore equal to the maximum degree of confidence (i.e., 1/2).
. 2. Discretization of fuzzy numbers ~p1 and ~p2 according to the support: - - -, parameter variation domain and J, discrete parameter

ue combinations.
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Fig. 3. An illustration of Zadeh’s Extension Principle.

Fig. 4. A cantilever box beam.
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This ZEP approach is very attractive because it is simple to implement. It defines a subset that characterizes
all the variations of the solutions studied according to a specific application, such as an eigenvalue problem.
However, when the size of the finite element model or the number of fuzzy parameters increases, this approach
rapidly becomes too time consuming. For a study of two fuzzy parameters with 7 discretization values (Fig. 3),
the representative set of the variation domain is defined by 72 values (49 values). Thus, for n fuzzy parameters,
with nd discretization values, the number of deterministic calculations will be nd

n.
This ZEP method was applied to solve fuzzy modal analysis problems in order to provide the reference data

that will allow us to compare and quantify the efficiency of our alternative method. These reference data are
referred to in Section 6.

4. Parametric modal analysis

In this section, a parametric analysis is defined and performed for one fuzzy parameter in order to show the
functional dependence of the fuzzy eigensolutions and to facilitate the explanation of mode shape pairing.
These two fundamental notions—functional dependence and mode shape pairing—govern behaviour
variations in modal analysis. A numerical test case, presented in the next section, is used to illustrate the
effect of these two notions on fuzzy eigensolutions. Though the analysis is performed for only 1 parameter, the
proposed solutions can, of course, be applied in the case of multiple fuzzy parameter variations.

4.1. Description of the test case

Consider the cantilevered box beam shown in Fig. 4. This structure is composed of 5 plates and modelled with
265 triangular shell elements and 1134 degrees of freedom (Fig. 5). Its material properties are: Young’s modulus
E ¼ 72� 109N/m2, Poisson’s ratio n ¼ 0.3, and density r ¼ 2700kg/m3. Its overall geometric characteristics are:
length L ¼ 3m, width l ¼ 0.2m, and height h ¼ 0.1m, with the individual plates e being 2mm thick.

The first eight frequencies of the structure are presented in Table 1. These frequencies constitute the initial
data for the parametric study. In order to simplify the discussion, the parametric study was performed only for
a variation in the thickness of the third plate (e3), which varied from 1.6 to 2.6mm. The fuzzy eigensolutions
were evaluated using Zadeh’s Extension Principle, where the fuzzy thickness ~e3 is represented by a triangular
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Fig. 5. A finite element model of the cantilever box beam.

Table 1

First eight frequencies of the cantilevered box beam

1 2 3 4 5 6 7 8

Frequencies (Hz) 0.80 2.47 4.09 8.77 9.75 10.51 10.71 13.61
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fuzzy number defined by the lower bound (1.6mm), the crisp value (2mm) and the upper bound (2.6mm). For
the applications, the most standard form—the triangular one—was chosen to model the variability, which was
defined solely with the data at our disposal, namely a nominal value and its extreme variations. In this case,
the degree of confidence of the different eigensolutions can be directly deduced from the degree of confidence
of the fuzzy thickness.

4.2. Functional dependence of eigensolutions

Depending on the type of solutions studied (e.g., displacements, stresses, eigenvalues, eigenvectors) and the
fuzzy parameters (e.g., Young’s modulus, Poisson’s ratio, density), the nature of functional dependence is not
always the same. This dependence can be monotonic (e.g., linear, quadratic) or not.

For certain parameters, simple rules can be defined because the solutions’ functional dependence is
monotonic. For example, eigenvalues tend to increase as Young’s modulus increases and decrease as density
increases. However, for other parameters, such as Poisson’s ratio or plate thickness, the functional dependence
is not always monotonic, particularly given large variations. These parameters are present in both the mass
and stiffness matrices, either defined by a rational fraction in the case of Poisson’s ratio, or as a function of
power in the case of plate thickness. For these kinds of parameters, the functional dependence is different for
each eigenvalue and for each component of the solution vector. The study of the different applications shown
in Fig. 6 highlights some extrema for a modal solution si (mainly for the case of eigenvectors).

Given this variation in the nature of the solutions’ functional dependence, the hypothesis of linearity and
monotonicity used by many authors [21,22] can thus imply errors in the calculation of the fuzzy solutions since
the form of the membership function depends directly on the nature of the functional dependence (Fig. 7). In
the non-monotonic case, certain parameter value combinations, which do not include all the fuzzy parameter
bounds, are needed to characterize the solution subsets with precision. The search for these specific
combinations is the first step of our method.

4.3. Mode shape pairing

This section examines the effect of modifying the form of the mode shapes and shows that mode shape
pairing can also affect fuzzy eigensolutions.

In modal analysis, the Modal Assurance Criterion (MAC) is usually calculated for the mode shape pairing
prior to comparing frequencies. The MAC is obtained using the following equation:

MACðf1;f2Þ
¼

fT
1f2

�� ��2
ðfT

1f1Þðf
T
2f2Þ

, (4)
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Fig. 7. Influence of nature of the function’s behaviour on the membership function: —, linear behaviour; - - -, quadratic behaviour;

???, non-monotonic behaviour.

Fig. 6. Influence of extrema on the interval solution.
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where f1 and f2 are two mode shapes to be compared. Generally, MAC values ranging from 0.8 or 0.9 to 1
are considered to define a good correlation between two mode shapes, especially for numerical data. Below
this limit, notable differences can appear locally in the mode shape, leading to a permutation between
frequencies.

Let us consider the 5th, 6th and 7th modes of the cantilever box beam. If certain parameters are varied, two
situations arise:
�
 for certain frequencies, the associated mode shapes will always appear in the same order as the initial one
(e.g., the 5th mode shape) and
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�
 for other frequencies, the order of the mode shapes can change, whether or not the initial frequencies were
distinct (e.g., the 6th and 7th mode shapes).

These situations are illustrated in Fig. 8, which shows the variation of the MAC based on a comparison of

the mode shapes in the initial model (fi) with those in the modified models (fm). Fig. 9 shows the resulting
fuzzy frequencies if the Extension Principle is applied without reorganizing the frequency subsets according to
mode pairing. Clearly, the 6th and 7th fuzzy frequencies, as well as the fuzzy component of the eigenvectors,
are wrong because the subsets solution aggregate mode shapes of different natures. In order to associate the
modified eigenvectors with the initial ones for the same shapes, we propose to define a criterion based on a
maximum MAC value. This criterion is traditionally used in experimental modal analysis to associate
experimental mode shapes with numerical mode shapes before calculating the eigenfrequency error.

As shown in Fig. 8, this criterion can be successfully applied in most situations, except in the vicinity of
e3 ¼ 2.4mm. For this specific zone, the criterion could be considered to be inadequate, since the MAC is very
small, which indicates no pairing. This specific case is highlighted on curve (a) in Fig. 11, which corresponds to
the maximum MAC values between the 6th and 7th modified eigenvectors and the 6th initial eigenvector.
These small values are due to modifying only two mode shapes (from distinct modes to multiple modes and
vice versa), which are always compared with the initial distinct mode shapes (Fig. 10). Thus, in spite of MAC
values less than 0.9, the criterion still aggregates eigenvectors of the same type. Curve (b) in Fig. 11 is even
more convincing; it represents the variation in the MAC criterion applied to the 6th eigenvectors for two
consecutive e3 parameter values. The slight difference between the two values leads to a small change in the
mode shapes, which can now be better compared.

The use of this MAC for fuzzy calculations implies reorganizing the frequencies and eigenvectors, which
allows good quality membership functions to be obtained (Fig. 12). These deterministic eigenvectors are
traditionally calculated via mass normalization. However, for fuzzy eigenvector aggregation, a unit norm is
preferred in order to provide a better indication of variability. Thus, in this case, mass changes are not taken
into account. Mode pairing and vector normalization will be applied in both the ZEP reference method and
our PAEM method.

5. Padé Approximants with Extrema Management method (PAEM)

In this section, we introduce our new method for calculating fuzzy eigensolutions. This method is based on
the fundamental notions described in Section 4, namely the functional dependence of eigensolutions and mode
shape pairing.

Calculating with fuzzy numbers requires discretizing each membership function. The discrete fuzzy numbers
are obtained from cuts, according to the degree of confidence (Fig. 13). The fuzzy problem is then transformed
Fig. 8. MAC criterion for the 5th, 6th and 7th mode shapes: ???, MAC (f5i, f5m); —, MAC (f6i, f6m); - - -, MAC (f6i, f7m).
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Fig. 9. Membership functions for frequencies 5–7 without mode pairing (obtained by ZEP): - - -, frequency f5; —, frequency f6;

– � � , frequency f7.

Fig. 10. Mode shape for different thickness values e3.

Fig. 11. MAC criterion: (a) - - -, max (MAC (f6i, f6m) and MAC (f6i, f6m) and (b) —, MAC (f6i, f6m) for two consecutive values of e3.
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Fig. 12. Membership functions for frequencies 5–7 with mode pairing (obtained by ZEP - - -, frequency f5; —, frequency f6;

– � � , frequency f7).

Fig. 13. Discretization of fuzzy number ~p according to the degree of confidence.
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into a series of interval problems, each defined for a a-cut level. For each a-cut level, an interval ~pa is defined
by the lower and upper bounds, pa and p̄a respectively, or by a crisp value pc and two variations, Dpa and Dp̄a.
This interval is expressed as follows:

~pa ¼ ½pa; p̄a�; ~pa ¼ ½pc � Dpa; pc þ Dp̄a�. (5)

Following the example of the ZEP method, the parameter variation domain is also discretized and is
represented by a set of discrete parameter value combinations for each a-cut level. Unlike the ZEP method, in
which all the parameter value combinations are evaluated, our strategy involves limiting the number of
calculations for these combinations, thus limiting the additional cost due to variability management. Our
method uses a sensitivity analysis [23,24] to detect the combinations of parameter values for each a-cut level
that will lead to the minimum and maximum eigensolution variations. This algorithm is presented in the
following section.

5.1. The PAEM algorithm

The PAEM algorithm (Fig. 14) consists of the following steps:
For the crisp values (a ¼ l):
�
 Determine the modal quantities and their first sensitivities for each fuzzy parameter. The signs of the first-
order sensitivities indicate the functional dependence of the response function and define the combinations
of discrete fuzzy parameter values for the following a-cut level, which could supply the minimum and
maximum variations (Step 1).
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Fig. 14. Construction of fuzzy number solution ~sk.
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For each a-cut level:

�
 Evaluate the first derivatives of the modal quantities for the combinations of discrete fuzzy parameter

values determined at the previous a-cut level (Step 2).

�
 Compare the signs of the derivatives with those obtained at the previous a-cut level.

J If the sensitivities have the same signs, the response function is considered to be locally monotonic, and
the determined combinations provide the minimum and maximum variations of the modal quantities for
the current a-cut level (Step 3a).

J If the sensitivities have different signs, the response function cannot be considered as monotonic, giving
rise to an extremum between these two a-cut levels. The combination nearest the extremum is chosen
and the search is stopped for this variation (Step 3b).
�
 Calculate the eigensolutions for the selected combinations of discrete fuzzy parameter values and apply the
MAC criterion to verify the form of the modes. To decrease the calculation time and maintain a good level
of accuracy, the ‘‘exact’’ calculation (corresponding to a deterministic finite element simulation) can be
replaced by a high-order approximation, using Padé rational functions [25–27], for example. This type of
approximation is described in the next section.

5.2. High-order approximation

Let us consider the modified eigensolution vector Um of length Ndof+1 defined by
fm

j

lm
j

 !
, where lm

j and fm
j

represent the jth modified eigenvalue and eigenvector of the structure (the index j will be omitted in the
next part).

The modified eigensolutions Um are therefore expressed as a series Sn(Um(e)), defined as

SnðUmð�ÞÞ ¼ U0 þ �U1 þ � � � þ �
nUn. (6)

This means that

Sn

fmð�Þ

lmð�Þ

 !
¼

f0

l0

 !
þ �

f1

l1

 !
þ � � � þ �n

fn

ln

 !
, (7)
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where e represents an additional unknown that allows the perturbed problem to be defined. This unknown is
similar to the control parameter of classic iterative algorithms. At the end of the calculation of Eq. (10), this
parameter is fixed to 1.

The modified mass and stiffness matrices Mm and Km are, respectively defined using the initial matrices M0

and K0 and the perturbation matrices DM and DK. The equation for the modified eigenvalue problem is thus
written as

ðK0 þ �DKÞðf0 þ �f1 þ � � � þ �
nfnÞ ¼ ðl0 þ �l1 þ � � � þ �

nlnÞðM0 þ �DMÞðf0 þ �f1 þ � � � þ �
nfnÞ. (8)

The vectors (Ui)i ¼ 0yn are determined after identifying the different order terms using Lee’s method [28,29].
For each order, the equations are put together in a linear system:

K0f0 ¼ l0M0f0

K0 � l0M0 �M0f0

�fT
0M0 0

" #
f1

l1

( )
¼
�ðDK� l0DMÞf0

0:5fT
0DMf0

" #
;

K0 � l0M0 �M0f0

�fT
0M0 0

" #
f2

l2

( )
¼
�ðDKf1 � l0DMf1 � l1DMf0 � l1M0f1Þ

0:5ðfT
0DMf1 þ fT

1DMf0 þ fT
1M0f1Þ

" #
;

..

. ..
. ..

.

K0 � l0M0 �M0f0

�fT
0M0 0

" #
fn

ln

( )
¼

� DKfn�1 �
Pn�1
k¼0

lkDMfn�k�1 �
Pn�1
k¼1

lkM0fn�k

� �

0:5
Pn�1
k¼0

fT
k DMfn�k�1 þ

Pn�1
k¼1

fT
kM0fn�k

� �
2
66664

3
77775:

(9)

The results obtained with Eq. (6) are equivalent to those obtained with the Neumann series [19]. However,
as soon as the variations associated with the parameters become significant, the convergence of the Neumann
approximation cannot be guaranteed. In order to avoid this limitation of the Neumann approximations, our
method uses Padé approximants, thus extending the domain of convergence and improving the precision of
the approximations.

In order to illustrate the Padé approximation [30] process, let us consider the function f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ1=2x
1þ2x

q
. This

function can be approximated using either a MacLaurin series f(e) ¼ 1�3/4x+39/32x2+O(x3), or a rational

fraction f ð�Þ ¼ 1þ7=8x
1þ13=8x

þOðx3Þ (Fig. 15). The MacLaurin series has a convergence radius equal to 1/2 and thus

diverges when e is superior to 1/2. The rational fraction approximation, on the other hand, is remarkably
accurate thoughout the entire interval studied.

Taking these considerations into account, the series Sn(Um(e)) is replaced by a rational fraction Fn(Um(e)):

FnðUmð�ÞÞ ¼ U0 þ �
Dn�2ð�Þ

Dn�1ð�Þ
U1 þ � � � þ �

n�1 D0ð�Þ

Dn�1ð�Þ
Un�1, (10)

where (Di(e))i ¼ 0yn�1, are polynomials of degree i with real coefficients di, such as Di(e) ¼ d0+ed1+
e2d2+?+eidi.

In this case, since the studied quantities are vectors, two solutions are possible. Either each component of Ui

is considered to be independent [30], or each component is treated as a unique quantity [31], which produces
better results. In the second possible solution, an orthonormal basis U�i is defined from the vectors Ui, such
that Ui ¼

Pi
j¼1aijU

�
i . The coefficients aij are used to determine the coefficients di of Di(e) and are calculated

using an iterative Gram-Schmidt algorithm [32]. (More details about the coefficient calculations are provided
in the Appendix and in Refs. [31–33].)

The precision of fuzzy modal solutions necessarily depends on the order of the Padé approximants. To
control the error in the Padé approximation when there is no reference value, a criterion based on the
difference between the approximated solutions for two successive orders of approximation p can be defined.
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Fig. 15. Plot of the function f and these approximations: —, function f; – � � , MacLaurin approximation; - - -, rational approximation.
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In the case of the eigenvalue, this criterion �
_
l is defined as follows:

�
_
l ¼

ljðpÞ
�� ��� ljðpþ 1Þ

�� ��
ljðpÞ
�� �� . (11)

This �
_
l criterion allows the convergence of the Padé approximation and the precision of approximated

solution to be verified. Please note that the eigenvalue problems presented in this paper require a third-order
approximation to produce good results.

In the next section, the results of the PAEM method on a numerical test case are compared to the results of
the ZEP method.

6. Numerical application

This section presents the results of the PAEM method for four test cases, thus demonstrating the efficiency
of the method.

6.1. First test case

In order to obtain the same description of the eigensolution membership functions, the fuzzy parameters are
defined using 6 a-cut levels for the PAEM method and 11 discrete values for the ZEP method. For these test
cases, a third-order approximation was selected for the PAEM method.

The structure described in Section 4 was defined using fuzzy parameters. First, a triangular fuzzy number
was defined to model the plate thickness e3. Three sets of lower and upper bounds were fixed: [1.9–2.1mm],
[1.6–2.4mm] and [1.6–4mm]. The variation of the third frequency f3 in terms of the parameter e3 is presented
in Fig. 16.

Fig. 17 presents a comparison of the ~f 3 membership functions obtained with PAEM and ZEP for the
different variation intervals. The results from PAEM are almost equal to those obtained by ZEP for all types
of behaviour (i.e., linear, quadratic and non-monotonic). The maximal error is on the order of 10�4 (Fig. 18).
The results for this first case demonstrate the robustness of our method in terms of the nature of the solutions’
functional dependence.

6.2. Second test case

In this second test case, a 20% variation in plate thickness was considered. Five fuzzy parameters were
defined, and the first eight frequencies and mode shapes of the structure were determined.
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Fig. 16. Frequency f3 according to parameter e3.

Fig. 17. Membership functions of ~f 3 for the different variation intervals: (a) linear behaviour; (b) quadratic behaviour; (c) non-monotonic

behaviour.

F. Massa et al. / Journal of Sound and Vibration 309 (2008) 63–8576
To further quantify how similar two correlated mode shapes might be, two scaled vector errors were defined
as follows:

errNð%Þ ¼
f1

�� ��� f2

�� ��
f1

�� �� to provide a global overview; (12)

errRNð%Þ ¼
f1 � f2

�� ��
f1

�� �� to highlight local errors; (13)

where J � J is the Euclidian norm. The error corresponding to the lower and upper bounds for the frequencies
and mode shapes, respectively, are shown in Figs. 19 and 20.

The results obtained with PAEM are very close to the reference data obtained with ZEP; the maximum
error in the calculations of the lower and upper modal quantities was on the order of 5%. Figs. 21 and 22
clearly show the high level of accuracy of the eigenvalue membership functions and the mode shape
predictions; the mapping represents the imprecision of the range of fuzzy eigenvectors.
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Fig. 19. Comparison of the lower and upper frequency errors produced by PAEM and ZEP for a ¼ 0. , lower bounds and , upper

bounds.

Fig. 18. Comparison of the lower and upper frequency errors produced by PAEM and ZEP for a ¼ 0: (a) linear behaviour, (b) quadratic

behaviour and (c) non-monotonic behaviour. , lower bounds and , upper bounds.
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For this test case, the combinatorial ZEP approach required the equivalent of 5� 104 deterministic
calculations, whereas our method required only 2� 103 (Fig. 23). Thus, the PAEM requires less computing
time than the ZEP method but yields very interesting results.

6.3. Third test case

To highlight the capabilities of our PAEM method, we tested it on an application with 15 independent fuzzy
parameters of different natures. Variability was introduced in 10% of the nominal values for each plate for
Young’s modulus, density and thickness. The fuzzy simulation was performed with the 15 fuzzy parameters
discretized by 6 a-cut levels. This test was performed for the first eight frequencies and a specific
component (degree of freedom 1107) of each mode shape (displacement following the Z-axis of Node A, as
shown in Fig. 5).

Because this third test took 15 fuzzy parameters into account, the ZEP method could not be applied because
it would have had to perform 1115 deterministic finite element simulations, which would have required
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Fig. 20. Comparison of the lower and upper mode shapes produced by PAEM and ZEP for a ¼ 0: (a) errors ErrN and (b) errors ErrRN.

, lower bounds and , upper bounds.

Fig. 21. Fuzzy frequency spectrum: —, ZEP method and , PAEM method.

Fig. 22. Presentation of 6th mode shapes: (a) PAEM method and (b) ZEP method.
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Fig. 23. Comparison of computing times: - - -, ZEP method and —, PAEM method.

Fig. 24. Fuzzy spectrum of frequencies: —, PAEM method; - - -, random sampling; ???, deterministic simulation; J, exact

calculations.
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unrealistic amounts of CPU time. In order to partially prove the validity of the membership functions, two
comparisons were made:

First, a random sampling was done amongst the 1115 parameter value combinations in order to
confirm that the membership functions calculated with PAEM included the calculated solutions. The number
of samples was voluntarily limited to 50,000 to insure acceptable computational costs. This sampling
procedure allowed us to verify that none of the samples produced a more extreme variation than the PAEM
method.

Second, the approximated solution and the finite element solution were compared in terms of the quality of
the Padé approximants for the parameter value combinations leading to extreme solution variations (a ¼ 0).

The fuzzy spectrum of the eight tested frequencies is presented in Fig. 24. Results from the above two
comparisons for the fourth eigenfrequency and component 1107 of the fourth mode shape are presented in
Fig. 25. Table 2 lists the useful parameter value combinations mentioned above. Although the number of fuzzy
parameters is significant, the results of PAEM method are quite satisfactory. The membership functions
calculated with PAEM effectively include almost all the solutions obtained by the 50,000 finite element
simulations. Moreover, the maximal errors made in the membership function support evaluations are less than
0.1% for the frequencies and less than 2% for the component of mode shapes, respectively. The random
sampling was completed in 5 h and the PAEM calculations in 5min. For the crisp values of the membership
functions, no specific verification is necessary because these values are already calculated in the PAEMmethod
using a finite element.
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Fig. 25. Membership functions of ~f 4 and
~f1107;4: —, PAEM method; - - -, random sampling; ???, deterministic simulation; J, exact

calculations.

Table 2

Combinations of parameter values for third test case

f1 (Hz) f2 f3 f4 f5 f6 f7 f8 f1107,4

Lower bound (a ¼ 0)

E1 (Nm�2) 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010

E2 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010

E3 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 7.92� 1010

E4 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010

E5 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 6.48� 1010 7.92� 1010

r1 (kgm
�3) 2970 2970 2970 2970 2970 2970 2970 2970 2970

r2 2970 2970 2970 2970 2970 2970 2970 2970 2970

r3 2970 2970 2970 2970 2970 2970 2970 2970 2970

r4 2970 2970 2970 2970 2970 2970 2970 2970 2430

r5 2970 2970 2970 2970 2970 2970 2970 2970 2430

e1 (m) 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018

e2 0.0018 0.0022 0.0018 0.0018 0.0018 0.0018 0.0018 0.0022 0.0018

e3 0.0018 0.0018 0.0022 0.0018 0.0018 0.0018 0.0018 0.0018 0.0022

e4 0.0022 0.0022 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018

e5 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0022

Upper bound (a ¼ 0)

E1 (Nm�2) 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010

E2 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010

E3 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 6.48� 1010

E4 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010

E5 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 7.92� 1010 6.48� 1010

r1 (kgm
�3) 2430 2430 2430 2430 2430 2430 2430 2430 2430

r2 2430 2430 2430 2430 2430 2430 2430 2430 2430

r3 2430 2430 2430 2430 2430 2430 2430 2430 2430

r4 2430 2430 2430 2430 2430 2430 2430 2430 2970

r5 2430 2430 2430 2430 2430 2430 2430 2430 2970

e1 (m) 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022

e2 0.0022 0.0018 0.0022 0.0022 0.0022 0.0022 0.0022 0.0018 0.0022

e3 0.0022 0.0022 0.0018 0.0022 0.0022 0.0022 0.0022 0.0022 0.0018

e4 0.0018 0.0018 0.0022 0.0022 0.0022 0.0022 0.0022 0.0018 0.0022

e5 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0018
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6.4. Fourth test case

The aim of this last test was to show that, if only few specific fuzzy solutions are studied, the proposed
method can be successfully applied in the case of multiple fuzzy parameters and a large industrial finite
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Fig. 26. Finite element model of the impactor sled.

Fig. 27. Description of fuzzy parameters e1, e2, E and r.
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element model. The test case was conducted on a drop tower impactor sled currently used for dynamic
compression and bending tests. The finite element model (Fig. 26) used for the simulation contained 37,962
degrees of freedom (shell and brick elements). Clamped conditions were applied to eight holes.



ARTICLE IN PRESS
F. Massa et al. / Journal of Sound and Vibration 309 (2008) 63–8582
Variability was introduced in 20% of the nominal thickness values for each plate in order to test the
behaviour variation in terms of these parameters. Because the plate material was standard aluminium, for
which no other information is known, variability was introduced into the Young’s modulus and density values
in order to represent the entire variation interval [34]. These four parameters, presented in Fig. 27, were
defined with triangular fuzzy numbers.

The two comparisons described in Section 6.3 were again performed in order to quantify the validity of
PAEM method for this large finite element model. The results for the first eigenfrequency and components
4808 and 7640 of the first mode shape (following the axis Y of Nodes A and B, respectively, as shown in
Fig. 26) are presented in Fig. 28. The number of simulations for the random sampling was limited to 1000. As
in the third test case, the PAEM results are very interesting. The membership functions calculated with PAEM
include the solutions of the finite element simulations. The maximal errors made on the membership function
support evaluations (Table 3) are less than 4%, and the CPU time for the PAEM simulation was 5mn.

Given the results from the 4 test cases, the PAEM method appears to be a general and efficient way to find
solutions in fuzzy modal analysis. This method can be applied in cases involving multiple fuzzy parameters,
Fig. 28. Membership functions of ~f 1,
~fAY ;1 and ~fBY ;1: —, PAEM method; - - -, random sampling; ???, deterministic simulation;

J, exact calculations.

Table 3

Combinations of parameter values for fourth test case

E (Nm�2) r (kgm�3) e1 (m) e2 (m)

Lower bound (a ¼ 0)

fi (Hz) 7� 1010 2800 0.008 0.0064

f4808,1 7.2� l010 2800 0.012 0.0064

f7640,1 7� l010 2700 0.008 0.00704

Upper bound (a ¼ 0)

fi (Hz) 7.2� l010 2700 0.012 0.0096

f4808,1 7� l010 2700 0.008 0.0064

f7640,1 7.2� l010 2800 0.012 0.0064
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non-monotonic functional dependencies, large variations and large industrial finite element models, the latter
being true when only few specific fuzzy solutions must be studied.

7. Conclusion

This paper proposed a new PAEM (Padé Approximants with Extrema Management) method, as an
alternative to the Zadeh Extension Principle. This new method allows both fuzzy eigenvalues and fuzzy
eigenvectors to be precisely calculated with acceptable CPU times. This method takes two fundamental
notions, namely functional dependence and the mode shape pairing, into account and exploits high-order
approximations in order to limit the computational costs associated with variability management. Practically,
the PAEM method is based on the discretization of parameter membership functions and the search for
discrete parameter value combinations, which indicate the minimum and maximum eigensolution variations
for each a-cut level. Efficient Padé approximants are used to calculate these extreme eigensolutions.

Four test cases were evaluated to highlight the efficiency of the proposed method. The first test focused on
monotonic and non-monotonic functional dependence, the second on a large variation in the fuzzy parameters, the
third one on multiple fuzzy parameters, and the last on a large industrial finite element model. This method has
now been applied in a CAD context [35] to optimize the fuzzy solutions in terms of fuzzy restriction rules.

Appendix

The proposed method uses Padé approximants, which are obtained in the following manner:
(1)
 From the vectors U1,y,Un of Eq. (6), an orthogonal basis is built using the Gram-Schmidt procedure
(in the computations, n ¼ 3):

U1 ¼ a11U�1;

U2 ¼ a21U�1 þ a22U�2;

U3 ¼ a31U�1 þ a32U�2 þ a33U�3:

8><
>:

Then, this basis is inserted into the polynomial representation, which introduces three polynomials of
decreasing degrees (2–0) as factors in the vector field Uk:

Um �U0 ¼ �U
�
1ða11 þ �a21 þ �

2a31Þ þ �2U�2ða22 þ �a32Þ þ �
3U�3ða33Þ.
(2)
 The polynomials are replaced by Padé approximants with the same denominator (D2 ¼ d1+ed2),
as follows:

a11 þ �a21 þ �2a31 �
b0 þ �b1

D2
;

a22 þ �a32 �
c0

D2
:

8>><
>>:

The coefficients bi and ci, are computed using the same principles as classic Padé approximants; each
fraction must have the same Taylor expansions as the corresponding polynomials up to order 2 and 1,
respectively:

b0 ¼ a11;

b1 ¼ a21 þ a11d1;

c0 ¼ a22:

8><
>:

The coefficients of D2 ¼ dl+ed2 are the solutions of the triangular system:

a31 þ a21d1 þ a11d2 ¼ 0;

a32 þ a22d1 ¼ 0:

(
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After some reorganization, a new form of the previous rational representation that involves only vectors
(3)

Uk and the coefficients di is obtained:

Um �U0 ¼ �
D1

D2
U1 þ �

2 1

D2
U2.

This last equation corresponds to Eq. (10) for a third-order approximation.
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